Deep neural networks (DNNs) are vulnerable to a class of attacks called "backdoor attacks", which create an association between a backdoor trigger and a target label the attacker is interested in exploiting. A backdoored DNN performs well on clean test images, yet persistently predicts an attacker-defined label for any sample in the presence of the backdoor trigger. Although backdoor attacks have been extensively studied in the image domain, there are very few works that explore such attacks in the video domain, and they tend to conclude that image backdoor attacks are less effective in the video domain. In this work, we revisit the traditional backdoor threat model and incorporate additional video-related aspects to that model. We show that poisoned-label image backdoor attacks could be extended temporally in two ways, statically and dynamically, leading to highly effective attacks in the video domain. In addition, we explore natural video backdoors to highlight the seriousness of this vulnerability in the video domain. And, for the first time, we study multi-modal (audiovisual) backdoor attacks against video action recognition models, where we show that attacking a single modality is enough for achieving a high attack success rate.
translated by 谷歌翻译
Multi-view projection techniques have shown themselves to be highly effective in achieving top-performing results in the recognition of 3D shapes. These methods involve learning how to combine information from multiple view-points. However, the camera view-points from which these views are obtained are often fixed for all shapes. To overcome the static nature of current multi-view techniques, we propose learning these view-points. Specifically, we introduce the Multi-View Transformation Network (MVTN), which uses differentiable rendering to determine optimal view-points for 3D shape recognition. As a result, MVTN can be trained end-to-end with any multi-view network for 3D shape classification. We integrate MVTN into a novel adaptive multi-view pipeline that is capable of rendering both 3D meshes and point clouds. Our approach demonstrates state-of-the-art performance in 3D classification and shape retrieval on several benchmarks (ModelNet40, ScanObjectNN, ShapeNet Core55). Further analysis indicates that our approach exhibits improved robustness to occlusion compared to other methods. We also investigate additional aspects of MVTN, such as 2D pretraining and its use for segmentation. To support further research in this area, we have released MVTorch, a PyTorch library for 3D understanding and generation using multi-view projections.
translated by 谷歌翻译
Recent advances in Neural Radiance Fields (NeRFs) treat the problem of novel view synthesis as Sparse Radiance Field (SRF) optimization using sparse voxels for efficient and fast rendering (plenoxels,InstantNGP). In order to leverage machine learning and adoption of SRFs as a 3D representation, we present SPARF, a large-scale ShapeNet-based synthetic dataset for novel view synthesis consisting of $\sim$ 17 million images rendered from nearly 40,000 shapes at high resolution (400 X 400 pixels). The dataset is orders of magnitude larger than existing synthetic datasets for novel view synthesis and includes more than one million 3D-optimized radiance fields with multiple voxel resolutions. Furthermore, we propose a novel pipeline (SuRFNet) that learns to generate sparse voxel radiance fields from only few views. This is done by using the densely collected SPARF dataset and 3D sparse convolutions. SuRFNet employs partial SRFs from few/one images and a specialized SRF loss to learn to generate high-quality sparse voxel radiance fields that can be rendered from novel views. Our approach achieves state-of-the-art results in the task of unconstrained novel view synthesis based on few views on ShapeNet as compared to recent baselines. The SPARF dataset will be made public with the code and models on the project website https://abdullahamdi.com/sparf/ .
translated by 谷歌翻译
With the recent advances in video and 3D understanding, novel 4D spatio-temporal challenges fusing both concepts have emerged. Towards this direction, the Ego4D Episodic Memory Benchmark proposed a task for Visual Queries with 3D Localization (VQ3D). Given an egocentric video clip and an image crop depicting a query object, the goal is to localize the 3D position of the center of that query object with respect to the camera pose of a query frame. Current methods tackle the problem of VQ3D by lifting the 2D localization results of the sister task Visual Queries with 2D Localization (VQ2D) into a 3D reconstruction. Yet, we point out that the low number of Queries with Poses (QwP) from previous VQ3D methods severally hinders their overall success rate and highlights the need for further effort in 3D modeling to tackle the VQ3D task. In this work, we formalize a pipeline that better entangles 3D multiview geometry with 2D object retrieval from egocentric videos. We estimate more robust camera poses, leading to more successful object queries and substantially improved VQ3D performance. In practice, our method reaches a top-1 overall success rate of 86.36% on the Ego4D Episodic Memory Benchmark VQ3D, a 10x improvement over the previous state-of-the-art. In addition, we provide a complete empirical study highlighting the remaining challenges in VQ3D.
translated by 谷歌翻译
Modern machine learning pipelines are limited due to data availability, storage quotas, privacy regulations, and expensive annotation processes. These constraints make it difficult or impossible to maintain a large-scale model trained on growing annotation sets. Continual learning directly approaches this problem, with the ultimate goal of devising methods where a neural network effectively learns relevant patterns for new (unseen) classes without significantly altering its performance on previously learned ones. In this paper, we address the problem of continual learning for video data. We introduce PIVOT, a novel method that leverages the extensive knowledge in pre-trained models from the image domain, thereby reducing the number of trainable parameters and the associated forgetting. Unlike previous methods, ours is the first approach that effectively uses prompting mechanisms for continual learning without any in-domain pre-training. Our experiments show that PIVOT improves state-of-the-art methods by a significant 27% on the 20-task ActivityNet setup.
translated by 谷歌翻译
Continual Learning is a step towards lifelong intelligence where models continuously learn from recently collected data without forgetting previous knowledge. Existing continual learning approaches mostly focus on image classification in the class-incremental setup with clear task boundaries and unlimited computational budget. This work explores Online Domain-Incremental Continual Segmentation~(ODICS), a real-world problem that arises in many applications, \eg, autonomous driving. In ODICS, the model is continually presented with batches of densely labeled images from different domains; computation is limited and no information about the task boundaries is available. In autonomous driving, this may correspond to the realistic scenario of training a segmentation model over time on a sequence of cities. We analyze several existing continual learning methods and show that they do not perform well in this setting despite working well in class-incremental segmentation. We propose SimCS, a parameter-free method complementary to existing ones that leverages simulated data as a continual learning regularizer. Extensive experiments show consistent improvements over different types of continual learning methods that use regularizers and even replay.
translated by 谷歌翻译
The existence of label noise imposes significant challenges (e.g., poor generalization) on the training process of deep neural networks (DNN). As a remedy, this paper introduces a permutation layer learning approach termed PermLL to dynamically calibrate the training process of the DNN subject to instance-dependent and instance-independent label noise. The proposed method augments the architecture of a conventional DNN by an instance-dependent permutation layer. This layer is essentially a convex combination of permutation matrices that is dynamically calibrated for each sample. The primary objective of the permutation layer is to correct the loss of noisy samples mitigating the effect of label noise. We provide two variants of PermLL in this paper: one applies the permutation layer to the model's prediction, while the other applies it directly to the given noisy label. In addition, we provide a theoretical comparison between the two variants and show that previous methods can be seen as one of the variants. Finally, we validate PermLL experimentally and show that it achieves state-of-the-art performance on both real and synthetic datasets.
translated by 谷歌翻译
Few-shot (FS) and zero-shot (ZS) learning are two different approaches for scaling temporal action detection (TAD) to new classes. The former adapts a pretrained vision model to a new task represented by as few as a single video per class, whilst the latter requires no training examples by exploiting a semantic description of the new class. In this work, we introduce a new multi-modality few-shot (MMFS) TAD problem, which can be considered as a marriage of FS-TAD and ZS-TAD by leveraging few-shot support videos and new class names jointly. To tackle this problem, we further introduce a novel MUlti-modality PromPt mETa-learning (MUPPET) method. This is enabled by efficiently bridging pretrained vision and language models whilst maximally reusing already learned capacity. Concretely, we construct multi-modal prompts by mapping support videos into the textual token space of a vision-language model using a meta-learned adapter-equipped visual semantics tokenizer. To tackle large intra-class variation, we further design a query feature regulation scheme. Extensive experiments on ActivityNetv1.3 and THUMOS14 demonstrate that our MUPPET outperforms state-of-the-art alternative methods, often by a large margin. We also show that our MUPPET can be easily extended to tackle the few-shot object detection problem and again achieves the state-of-the-art performance on MS-COCO dataset. The code will be available in https://github.com/sauradip/MUPPET
translated by 谷歌翻译
纯变压器模型在自然语言处理和计算机视觉方面取得了令人印象深刻的成功。但是,变压器的一个限制是它们需要大型培训数据。在3D点云的领域中,大数据集的可用性是一个挑战,它加剧了3D任务的训练变压器问题。在这项工作中,我们凭经验研究和研究利用大量图像的知识以了解点云的理解的效果。我们制定了一条称为\ textIt {pix4point}的管道,该管道允许在图像域中利用预验证的变压器来改善下游点云任务。这是通过用于3D域专门的令牌和解码器层的帮助,通过模态无形的纯变压器主链实现。使用图像预言的变压器,我们分别在Scanobjectnn,ShapenetPart和S3DIS基准上观察到3D点云分类,部分分割和语义分割的任务的Pix4Point的显着性能提高。我们的代码和模型可在:\ url {https://github.com/guochengqian/pix4point}中获得。
translated by 谷歌翻译
近年来,生成的对抗网络(GAN)在各种任务和应用中都显示出了令人信服的结果。但是,模式崩溃仍然是gan的关键问题。在本文中,我们提出了一条新型的培训管道,以解决甘恩斯的模式崩溃问题。与现有方法不同,我们建议将鉴别器概括为特征嵌入,并最大程度地提高鉴别器学到的嵌入空间中分布的熵。具体而言,两个正则化术语,即深度局部线性嵌入(DLLE)和深度等距特征映射(疾病),旨在鼓励歧视者学习嵌​​入数据中的结构信息,以便可以是歧视器所学的嵌入空间,可以是可以得到的。形成良好。基于鉴别器支持的良好学习嵌入空间,非参数熵估计量旨在有效地最大化嵌入向量的熵,以最大化生成分布的熵的近似值。通过改善鉴别器并最大化嵌入空间中最相似的样品的距离,我们的管道可有效地减少模式崩溃的情况,而无需牺牲生成的样品的质量。广泛的实验结果表明,我们的方法的有效性超过了GAN基线,MAF-GAN在Celeba上(9.13 vs. 12.43),超过了最新的基于动漫的能量模型(Anime-Face DataSet( 2.80 vs. 2.26的成立得分)。
translated by 谷歌翻译